O.P Code:23EC0401 SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR
(AUTONOMOUS)

B.Tech. II Year I Semester Regular & Supplementary Examinations November-2025
SIGNALS, SYSTEMS AND STOCHASTIC PROCESSES
(Electronics & Communications Engineering) R23 H.T.No.

5M	13	CO3	Sketch the magnitude and phase response for a distortion less	6 2	
			III-III		
10M	L1	CO2	State and prove sampling theorem.	U I	
		547	OR		
10M	L1	C02	Explain modulation property of Fourier transform	4	
			UNIT-II		
			the following system. $Y(t)=x(t+1)+x(t-1)$		
10M	L3	C01	Find the linearity, time-invariance, causality, stability and invertibility of	အ	
ē			OR		
			Periodic Signals.		
5M	L2	CO1	Discuss the following. (i) Even and Odd signals (ii) Periodic and Non-	÷	
			power signal or energy signal.		- 5
5M	L1	C01	. Define energy and power signals. Find the signal x(t)= e-2t u(t) is a	2 a	
				i)	
		2.5	(Answer all Five Units 5 x $10 = 50$ Marks)		
2M	L1	CO5	Explain the statement of Wiener-Khinchin relation.	٠	
2M	L1	CO5	Define Power Spectrum Density.	; 	
2M	L1	C04	Define wide sense stationary random processes.	_	
2M	L1	C04	Explain about Paley-Wiener criterion.	(TQ	
2M	L1	CO3	What is impulse response.	f	
2M	L1	CO3	Define sampling theorem.	e	
2M	L2	C02	Find the fourier transform of e ^{-at} u(t)	р	
2M	II	CO2	Test whether the signal $y(t) = 3x(t) + 2$ is linear or non linear.	c	
			systems.		
2M	L1	C01	Discuss about causal and non-causal, Time invariant and time variant	ь	
2M	L2	C01	Define signal and system.	1 a	
			(Answer all the Questions $10 \times 2 = 20$ Marks)		
			PART-A	12	
s: 70	Vark	Max. Marks: 70	(Electronics & Communications Engineering)	Time:	

11		10				9					90		7	
Derive the relationship between cross-power spectral density and cross correlation function. **** END ****	b Find the power spectral density for $R_{XX}(\tau)=A^2/2\sin(\omega_0\tau)$. OR		V-TINU	output of a LTI system.	b Derive the expression for cross correlation function between the input and	a Define Covariance of the Random processes with any two properties.	OR	stationary or not.	distributed random variable on (0,2). Find whether X(t) is wide sense	b A random process is given as $X(t) = At$, where A is a uniformly	a Define Wide Sense Stationary Process and write it's conditions.	UNIT-IV	Derive the output response of linear time invariant system.	OR
C05 \.L1	CO5				C05	C05				C04	C04		C03	
. Li	1.2	L1			L2	L1				L3	L1		Ξ	
10M	5M	5M			5M	5M				4M	6M		10M	

b Define linear time variant system.

CO3 L2

5M

transmission system.